EduRag

Una proposta per usare l’intelligenza artificiale in ambito educativo

Authors

DOI:

https://doi.org/10.4454/graphos.112

Keywords:

LLMs, RAG, Artificial intelligence, Prompt engineering, EduRag

Abstract

This article explores the relationship between artificial intelligence and education, focusing on Large Language Models and the opportunities and challenges these tools present. After analysing the architectures that have enabled their success, such as the Transformer, the issues related to the transparency and reliability of the generated responses are examined, with particular attention to the phenomenon of model "hallucinations." Strategies to mitigate these challenges, such as Chain of Thought and Retrieval-Augmented Generation, are then illustrated, which improve the transparency and reliability of LLMs. The EduRag project represents a practical application of these strategies, demonstrating how AI can be effectively used in the educational field to support learning and promote the use of reliable sources. Finally, possible future scenarios are outlined in which AI will play a central role in education, with increasingly personalized, interactive, and multimodal tools capable of enhancing the educational experience through deeper integration with language, writing, and other forms of human interaction.

References

Beard, G. M. (1881). American Nervousness.

Carr, N. (2011). Internet ci rende stupidi? Come la rete sta cambiando il nostro cervello. Raffaello Cortina (ed. or. 2010).

Chen, Y., Fu, Q., Yuan, Y., Wen, Z., Fan, G., Liu, D., Zhang, D., Li, Z., & Xiao, Y. (2023). Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 245–255. CIKM ’23: The 32nd ACM International Conference on Information and Knowledge Management. https://doi.org/10.1145/3583780.3614905

Giliberto, J. (2013, settembre 17). Storia. Quando la paura del treno scatena rivolte e sabotaggi. È il 1830. Correnti. https://jacopogiliberto.blog.ilsole24ore.com/2013/09/17/tav-quando-la-paura-del-treno-scatena-rivolte-sabotaggi/

Gori, M. (2003). Introduzione alle reti neurali artificiali. Mondo digitale, 2(8), 4–20.

Howard, R. (Regista). (2002, gennaio 4). A Beautiful Mind [Bi-ography, Drama, Mystery]. Universal Pictures, Dreamworks Pic-tures, Imagine Entertainment.

Johnson, J., Douze, M., & Jégou, H. (2017). Billion-scale similarity search with GPUs (arXiv:1702.08734). arXiv. https://doi.org/10.48550/arXiv.1702.08734

LangChain. (2024, settembre 15). https://www.langchain.com/

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel, T., Riedel, S., & Kiela, D. (2021). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks (arXiv:2005.11401). arXiv. https://doi.org/10.48550/arXiv.2005.11401

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12–12.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Es-timation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. https://doi.org/10.48550/arXiv.1301.3781

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., & Mian, A. (2023). A Comprehensive Over-view of Large Language Models. https://doi.org/10.48550/ARXIV.2307.06435

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M., Tworek, J., Yuan, Q., Tezak, N., Kim, J. W., Hallacy, C., Heidecke, J., Shyam, P., Power, B., Nekoul, T. E., Sastry, G., Krueger, G., Schnurr, D., Such, F. P., Hsu, K., … Weng, L. (2022). Text and Code Embeddings by Con-trastive Pre-Training (arXiv:2201.10005). arXiv. https://doi.org/10.48550/arXiv.2201.10005

Numerico, T. (2021). Big data e algoritmi: Prospettive critiche. Carocci.

Parlamento Europeo e Consiglio dell’Unione Europea. (2024). Regolamento (UE) 2024/1689 relativo all’intelligenza artificiale (AI Act). https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

Ramshaw, L., & Marcus, M. (1995). Text chunking using trans-formation-based learning. Third workshop on very large corpora. https://aclanthology.org/W95-0107

Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A., Si, C., Li, Y., Gupta, A., Han, H., Schulhoff, S., Dulepet, P. S., Vidyadhara, S., Ki, D., Agrawal, S., Pham, C., Kroiz, G., Li, F., Tao, H., Srivastava, A., … Res-nik, P. (2024). The Prompt Report: A Systematic Survey of Prompt-ing Techniques. https://doi.org/10.48550/ARXIV.2406.06608

Skinner, B. F. (1961). Teaching Machines. Scientific American, 205(5), 90–106.

Spitzer, M. (2013). Demenza digitale: Come la nuova tecnologia ci rende stupidi. Garzanti (ed. or. 2012).

Streamlit. (2024, settembre 15). https://streamlit.io/

Toosi, A., Bottino, A. G., Saboury, B., Siegel, E., & Rahmim, A. (2021). A brief history of AI: How to prevent another winter (a critical review). PET clinics, 16(4), 449–469.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). arXiv. https://doi.org/10.48550/arXiv.1706.03762

Vespignani, A., & Rijtano, R. (2019). L’algoritmo e l’oracolo: Co-me la scienza predice il futuro e ci aiuta a cambiarlo (p. 197). Il Saggiatore.

Vygotskij, L. S. (1934). Pensiero e linguaggio (L. Mecacci, A c. Di). La Terza e figli (Ed. italiana 1990).

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits rea-soning in large language models. Advances in neural information processing systems, 35, 24824–24837.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., & Nara-simhan, K. (2024). Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information Pro-cessing Systems, 36. https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html

Published

2025-01-29

How to Cite

Dragoni, D., & Epure, M. D. . (2025). EduRag: Una proposta per usare l’intelligenza artificiale in ambito educativo. Graphos. International Journal of Paedagogy and Didactics of Writing, 6. https://doi.org/10.4454/graphos.112

Issue

Section

Essays